Contribution from the Laboratory of General and Inorganic Chemistry, Faculty of Science, The University, Zagreb, Yugoslavia.

The Crystal Structure of Mercury(II) Acetamide

B. Kamenar and D. Grdenić

Received December 23, 1968

Mercury(II) acetamide crystallizes in the monoclinic system, the space group $P2_1/c$, with two molecules per unit cell. The unit cell dimensions are: $a = 8.77 \pm$ 0.02 Å, $b = 4.80 \pm 0.01$ Å, $c = 8.46 \pm 0.02$ Å, $\beta = 96.5 \pm 0.2^\circ$, the measured and calculated densities are 2.95 and 2.97 g/cm³, respectively. The structure has been solved using 456 independent reflections collected about the a, b and c axes on integrated equi-inclination Weissenberg photographs and refined by least-square method to R = 0.134. The structure is built up of the discrete planar centrosymmetric Hg(CH₃CONH)₂ molecules containing two collinear covalent Hg–N bonds of 2.06 ± 0.06 Å. The oxygen atoms are 3.17±0.06 Å from the mercury atom and the carboxyl-amide groups are not chela-ting groups in this structure. There are two oxygen atoms from two neighbouring molecules distant 2.88 ± 0.06 Å from the mercury atom. The molecules are linked together along the c axis by O-H...N hydrogen bonds of 3.05 ± 0.06 Å. The other bond lengths are within the range expected for this class of compounds.

Introduction

Covalently bonded mercury in mercury(II) acetamide has been anticipated due to the absence of typical reaction for mercury(II) ions in aqueous solutions.1 There has been no direct evidence whether the co-ordinating bonds are to the nitrogen or oxygen atoms, but experience with amides in organic chemistry has produced the commonly accepted belief that in all metal carboxyl-amides the metal is bound to nitrogen. The decision is difficult because amides are very weak acids and the proton can be attached either to oxygen or to nitrogen.² For the substitution of proton by metal ion the nature of the metal could be decisive as well. It has also been suggested that both the nitrogen and oxygen atoms are bound to the metal atoms, as in the case of mercury(II) acetamide,^{3,4} giving a chelate complex in which mercury would be in planar fourfold co-ordination. Such a structure is not likely to occur according to the known stereochemistry of mercury.⁵ In addition there is no known structure of a mercury oxo-acid salt in which the anion has a symmetric function. This

H. Ley and H. Kissel, Ber. Dtsch. Chem. Ges., 32, 1358 (1899).
 J. D. Roberts and M. C. Caserio, "Basic Principles of Organic Chemistry", W. A. Benjamin, Inc., New York, 1965, p. 680.
 L. Kahovec and K. Knollmüller, Z. Physikal. Chem., B, 51, 49 (1941).
 W. Kutzelnigg and R. Mecke, Spectrochim. Acta., 18, 549 (1962).
 D. Grdenić, Quart. Rev. Chem. Soc., Lond., 19, 303 (1965).

investigation was undertaken in order to investigate the crystal chemistry of mercury as well as to elucidate the bonding in a metal carboxyl-amide. It is interesting that neither the structure of this nor of any other metal carboxyl-amide has been determined so far.

Experimental Section

Preparation and crystal data. Mercury(II) acetamide, Hg(CH₃CONH)₂, was prepared by dissolving mercury(II) oxide in the molten acetamide. The crystals from aqueous solution were obtained in the form of a crystalline mass and the separation of individual single crystals suitable for measurements was quite difficult.

The lattice parameters were determined from oscillation and Weissenberg photographs. The systematic absence of reflections hol for l odd and 0k0 for k odd uniquely determined the space group as $P2_1/c$. Crystals data are collected in Table I.

Table I.	Crystallographic	data for	Hg(CH ₃ CONH) ₂ .
----------	------------------	----------	---

M.W. = 316.67Crystallographic system: monoclinic Space group: $P2_1/c - C_{2h}^5$ Unit cell parameters: $a = 8.77 \pm 0.02$ Å $b = 4.80 \pm 0.01$ Å $c = 8.46 \pm 0.02$ Å $\beta = 96.5 \pm 0.2^{\circ}$ $V = 353.8 Å^{3}$ Z = 2 $d_{calc} = 2.97 \text{ g cm}^{-3}$ $d_{obs} = 2.95 \text{ g. cm}^{-3}$ (picnometrically) $\mu_{c_{uK\alpha}} = 426 \text{ cm}^{-1}$

Except for some weak reflections, all hkl reflections fulfil the condition of k + l = 2n indicating the special position of the mercury atom. Three-dimensional X-ray diffraction intensity data ($hk0 \rightarrow hk7$, $h0l \rightarrow h4l$, and $0kl \rightarrow 5kl$) were taken on Nonius-Delft integrated equi-inclination Weissenberg photographs (multiple-film technique) using nickel-filtered copper K radiation. For the structure analysis 456 independent intensities were determined by means of a microdensitometer. After corrections for Lorenz and polarization factors the intensities were placed on the same relative scale. No absorption correction was used. The size of the crystal was $0.16 \times 0.13 \times$ $\times 0.06$ mm.

Table II. Observed and calculated structure factors. The values listed are 50F, and $50F_c$.

h	k	1	۲.	۴.	h	k 1	•	r _c	h	k 1	Fa	۶	h	k	1	Fo	Fc	h	k	1	Fo	P _c
0	0	2	7754	7954	1	5 -1	1811	2019	3	2-8	2355	2469	5	0	8	1123	1140	7	1	1	3106 2103	3036
		4	6064	51 38	-	Ĩ	2056	2202		-6	4163	3307 3665	5	1	-9 -7	2161 2441	2733			ź	1596	1627
		ŏ	2687	2695		, ś	1224	1521		-2	4103	4033			-5	4013	3579 4125	7	2	-é	1665	1847
0	1	10	1435	1654	1	6 -2 -1	829	187		2	3714	3836			-1	3035	3518			-6 -4	2114 2811	2033
		2	1874	-1393		ę	811	ນາ		4	3709	3254 2927			3	2844	2679			-2	2504	2484
		í	797	- 361		2	506	1267		ě	1661	1818			5	2771	2 39 3			2	2020	1896
		?	3555	4299	2	0-10 -8	1604 3326	20 96 3274	3	3 - 3	2308	2607	5	2	-8	2166	2202			4	1510	1492
0	2	9	2 301 6598	2 392 6744		-6	5026	5108 5675		-5	37 30 466 3	3038 3979			7	3497	3473	7	3	- <u>ī</u>	977	1513
•	-	2	7276	5867		-2	4004	5399		-1	4272	4347			-2	3633 1917	3973 3972			-3	2195	2179
		5	4542	3468		2	5143	4 <i>311</i> 5441		5	3353	2881			2	3724	3421			-1	2124 1839	2122
		8 10	2162 1059	2129 162 3		2	5042 3329	4918 3007		5	2656 1389	2161			6	1678	1533			3	1185	1478
0	3	ĩ	3948	3766		8	2396	2471	3	4 8	958	1542	5	٦	8	929 1625	11.77 2036	7	4	4	1178	im
		5	3985	2095	2	1 -9	1949	2332		-4	2169	22 38			-5	2931	2558			-2	1279	1442
		79	2193	2217 1694		-7	2600 5681	2960 4721		-2	2160	2733			-1	2512	2349			2	996	1291
0	4	ò	362	3277		-4	1460	-903		2	2246	2535			1	3006 2266	2882 2266	8	0	-ē	1886	1564
		Ą	3189	2101		-2	1086	-990		6	1237	1580			Ś	1694	1549			4	2355	2011
		8	2256 891	2206		-1	5518 971	971	3	5 -5	1163	2020	5	4	-6	1531	1841			-2	2650 2708	2232
0	5	1	2138	2187		1	6997	8618 5747		-1	1476	1825 1642			4	2046	21 30 2409			2	1949	1812
		Ś	1154	1426		ź	4480	2913		3	1248	1590			Ö	2111	2113			\$	923	910
0	6	2	700	1263		9	1427	1752	4	ر 10–10	1604	2019			Ę	1518	1500	8	1	-7	1551 2695	1985
1	0-	10	1622	2068 3461	2	2-10	1110	1826 2844		-8 -6	2455 2854	2630 2860	5	5	-3	1225	1406			-į	2579	2458
		-3	4559	4774		-6	4798	3626		-4	4964	4893			-1	1164	1444			1	2376	2119
		-2	5633	6157		-2	5894	5682		-2	4258	5246			្ទិ	806	1176			3	1652 1021	1554
		2	3758 8104	8357 8890		2	3767 4074	4686 3614		2	4844 4067	5429 3956	6	0		3781	3395	8	2	-6	1697	1686
		Ţ	4402	4 320		4	4663	3802		6 8	2691 1669	2627			4	3666 1754	3687			-2	2140	2042
		8	2589	2531		ě	1850	1997	4	1 -9	2201	24 34			ō	3947	3810			2	1795	1779
1	1	10	929 1830	1490 2053	2) -9 -7	1268 2049	1810 2338		-5	4992	4596			Ę	2561	2019	A	•	4	1109	1361
•	-	-7	3015	3282		-5	3930 4936	31 31		-3 -1	4461 3923	4636 4946			6 8	1876 728	1837 951	0	,	-3	1686	1909
		-4	1352	-765		-1	4391	4334		ī	3236	3721	6	1	-9	1665	1867			-1	1338	1395
		-3	1068	66 6		5	4303	3413		5	3273	3039			-5	2897	2559	6	4	3	914 791	1015
		-1	7180	7423		57	3956 1825	306 6 2172		7 9	1446 902	1787 1247			-1	3707 3661	3335	•	•	õ	751	1054
		ĭ	5945	6404	2	فم	701	1176	4	2 -8	2 300	2401			1	3067	3180	9	0	-6	1497	1587
		3	6619	5566	-		2004	2064		·	3996	3697			Ś	2020	1930			-12	1835	1629
		5	6013	-604 4801		12	3060	2421 2999		-2	4206	4548	6	2	-0	1987	1998			2	2333	190) 1769
		7	3233	3287		0	2439	2925 2569		2	4374	4497 2921			-6	3029	2760	•	,	4	1052	1109
1	2.	-10	1186	1819		ž	2157	21.9		ć	2272	2245			-ż	2930	2901	,	-	-5	1859	1794
		-6	4578	2744	2	5 -5	1336	1780	4	3 - 9	1022	1670			2	2541	2467			-3	1979	1848 1560
		4	69 3 0 7229	5385 6263		-3 -1	1666 1596	1852 1770		-7	2149 3586	2435 2983			4	2040	1802			ĩ	1113	1107
		õ	4 359	5305		Ĩ	1761	2022		-?	3297	2942 3614	6		3 -7	1285	1846		~	ş	584	741
		Ą	5327	3972		<u>ر</u> 5	1033	1418		ī	3384	3225			-3	241)	2399	,	2	-4	1410	1556
		8	3759 2013	3040 2036	3	6 0 0-10	622 1690	1256 2133		5	1945	1794			-1	2291	2159			-2	1428	1559
1	1	10	696	1309		-9	2254	2514		7	1004	1331			3	1942	2205			Ž	1000	1230
•		-7	2099	2301		-4	5673	56 31		-4	2200	2296	6	4	- 6	1094	1530	9	3	-;	1367	1252
		-3	4614	3554		-0	3703	5058		-0	2081	2219			-2	1620	1903			-1	1197 842	1294
		-1	4549 3960	4363		2	4355 4451	4704		4	1796	1899			2	1626	1905	10	0	3	250	78
		ž	5206	3993		ć	3465	3347		5 +5	1056	1430	6		4 5 -1	1024	1013		•	-2	1425	1489
		í	1952	2113		, 1 <u>0</u>	856	1523		· -;	1402	1717	-		i	762	1087			2	1108	1165
1	4	-8	955	1556	J	-7	3222	3648		1	1223	1485			-6	3189	2643	10	1	-5	1075	1322
		-6	2104	2125 2959		-9	5123 6454	4510 6367		3 10-10 ا	1014	1281 1940			-4-2	3391 3161	2868 2828			-1	1159	1224
		-2	3543	3213		-2	1 309	-954		-8	2972	2784			02	2695	2373			3	685	717
		2	2989	2801		1	4742	5802		-4	3890	3815			ļ	1698	1410	10	2	-2	813 995	1227
		6	2358 1859	1841		5	5509 3221	5429 3085		-2	5108 4627	5054 5186	7	1	-7	1727	2200			0	871	1096
1	5	-5	726	1417		7	1635	2058		2	3925	3829 3456			-1	3048	2665 2640	11	٥	-2	904	1096
-	,	-)	1476	1616	3	2-10	386	1025		6	źiíi	1992			-í	3481	3311	11	1	-1	587	890

26

Table III. Co-ordinate and thermal parameters ^a with their estimated standard deviations ^b.

Atom	x/a	y/b		z/c			
Hg N O C C(CH ₃)	0.000 0.149(7) 0.210(5) 0.235(8) 0.350(7)	0.000 0.192(16) 0.538(13) 0.383(17) 0.534(20)		0.000 0.136(7) 0.040(5) 0.085(9) 0.188(7)	3.72(1.2) 3.29(0.8) 3.26(1.3) 3.41(1.2)		
b11 Hg 0.0129(4)	b ₂₂ 0.0317(14)	b33 0.0081(4)	b ₂₃ 0.0010(104)	b ₁₃ 0.0075(7)	b ₁₂ 0.0061(159)		

^a The anisotropic temperature factors for the Hg atom are in the form: $exp[-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{13}kl + b_{13}hl + b_{13}hk)]$. ^b Standard deviations are in parentheses in terms of the least significant digits of the parameters.

Structure Determination. The special position 2(a) of mercury was shown by two Patterson projections obtained by means of the von Eller photosommateur. A three-dimensional Fourier synthesis was calculated phased on the niercury atom position. The first Fourier synthesis showed all the light atoms. Five cycles of the least-squares refinement, with isotropic thermal parameters for all atoms, resulted in a reliability index of R = 0.168. Four cycles of the refinement process were computed using anisotropic thermal parameters for the mercury atom only. Unit weight was used for all observations. The final value of the reliability index is R = 0.134. Further refinement was not possible due to unfavourable spot shape and neglecting absorption. The maximum shift in the final cycle of least-squares was less than 0.1σ . The observed and calculated structure factors are given in Table II. The final positional and thermal parameters together with their estimated standard deviations are given in Table III. The F_c values were calculated using the atomic scattering factors of Thomas and Umeda for mercury,⁶ of Berghuis, Haanapel, Potters, Loopstra, MacGillavry and Veenendaal for oxygen, nitrogen and carbon.⁷

Structure factors and the Fourier synthesis were calculated on the Ferranti Mercury computer at the University of Sheffield while the refinement procedure was performed on the Science Research Council Atlas computer at Didcot, England.

Results and Discussion

It is seen imediately from the data in Table IV as well as from Figure 1 that mercury(II) acetamide does not have a chelate structure.

One atom of the carboxyl-amide group is closely bound to the mercury atom at a distance of 2.06 Å. Whether this atom is the nitrogen or the oxygen atom cannot be established from the X-ray diffraction data owing to the small difference between the scattering power of carbon and oxygen. Nevertheless, the unambigous answer is obtained by analyzing the lengths of the adjacent bonds.

If the atom in question is denoted by A, then the bond length of Hg-A as determined permits both possibilities for A, the oxygen or the nitrogen atom, since the value of 2.06 Å corresponds to the Hg–O

Table IV. Intramolecular and intermolecular distances (in Å) and angles^a (in deg.) with their estimated standard deviation^{b.8}

Hg-N	2.06(6)	O'''-HN	3.05(6)
C –N	1.23(9)	O-CH ₃ "	3.70(6)
С —О	1.33(8)	CH ₃ CH ₃ ⁱ	3.80(8)
C –CH3	1.58(9)	N-C-O	123.3(1.6)
Hg—O	3.17(6)	N-C-CH ₃	123.4(1.6)
Hg-O'	2.88(6)	O-C-CH,	110.6(1.2)
HgCH ₃ ''	3.82(7)		

^a The positions are denoted as follows: no label x, y, z; (i) x, 1+x, z; (ii) x, -1/2-y, 1/2+z; (iii) x, -1/2-y, -1/2+z; (iv) 1-x, -1/2+y, -1/2-z. ^b Standard deviations are given in parentheses.

Figure 1. The arrangement of mercury(II) acetamide molecules projected down the c-axis. The oxygen-to-mercury and methyl-to-mercury approaches are shown by broken lines.

bond as found in the structure of mercury(II) oxide⁹ or in mercury(II) oxonium compounds,¹⁰ as well as to the Hg-N bond, as found in the structure of Millon's base¹¹ or in amidomercury(II) halides.¹² On the other hand, the bond C-A, which is found to be 1.23 Å, cannot be a C-O bond, because this value is too short for a single carbon-oxygen bond, for

- (9) K. Aurivillius, Acta Chem. Scand., 18, 1305 (1964).
 (10) S. Sćavničar and D. Grdenić, Acta Cryst., 8, 275 (1955).
 (11) W. N. Lipscomb, Ann. N. Y. Acad. Sci., 65, 427 (1957).
 (12) (a)K. Brodersen and W. Rüdorff, Z. Naturforsch., 9b, 164 (1954); (b) K. Brodersen, Acta Cryst., 8, 723 (1955).

⁽⁶⁾ L. H. Thomas and K. Umeda, J. Chem. Phys., 26, 293 (1957).
(7) J. Berghuis, I. J. M. Haanapel, M. Potters, B. O. Loopstra, C. H. MacGiliavry, and A. L. Veenendaal, Acta Cryst., 8, 478 (1955).
(8) "International Tables for X-ray Crystallography", Vol. II, Kynoch Press, Birmingham, 1959, p. 331.

which a value of not less than 1.43 Å must be expected. Consequently, A is the nitrogen atom and the bond of 1.23 Å is a carbon-nitrogen double bond. The value agrees with the sum of the covalent doublebond radii as well as with the values found in the structure of bis(acetamidine)-platinum(II) chloride monohydrate¹³ and in the structure of dimethylglyoxime.¹⁴ Consequently, the nitrogen atom is covalently bound to mercury and the formula of mercury(II) acetamide is

The carbon-oxygen bond length of 1.33 Å, however, is considerably shorter than a single bond required by the above formula (1). It corresponds to the carbon-oxygen bond in carboxylic acids which approaches the double bond as, for instance, in acetic acid where it is 1.29 and 1.36 Å in the crystal structure and in the gaseous dimer respectively.¹⁵ In the crystal structures of the acetamide the C-O bond is even shorter and amounts to 1.26 and 1.28 Å in the orthorombic and trigonal modification respectively.¹⁶ It follows that the C–O bond in mercury(II) acetamide is not a single bond, as required by the formula (I) but is a partial double bond as in free carboxyl-amides or in carboxylic acids. The intermediate character of this bond in both latter classes of compounds is the result of resonance which increases as the carboxylic group becomes more symmetric. This can be achived by hydrogen bonding or by salt formation.¹⁷ In mercury(II) acetamide this tendency cannot be fulfilled within the molecule, but can be by intermolecular interactions. Hydrogen bonding between the molecules allows resonance such as given by the formulae (II) and (III).

(13) N. C. Stephenson, J. Inorg. Nucl. Chem., 24, 801 (1962).
(14) "Interatomic Distances", The Chemical Society, London, 1958, M 170. p.

p. M. 170.
(15) G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond",
(15) G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond",
W. H. Freeman and Company, San Francisco, 1960, p. 266.
(16) W. C. Hamilton, Acta Cryst., 18, 866 (1965).
(17) L. Pauling, "The Nature of the Chemical Bond", 3rd edn., Cornell University Press, Ithaca, 1960, p. 275.
(18) G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond",
W. H. Freeman and Company, San Francisco, 1960, p. 239.
(19) A. Weiss and Al. Weiss, XVIth International Congress of Pure and Applied Chemistry, Congress Handbook, Vol. 1, Paris, 1957, p. 118.

Each molecule forms two O-H...N hydrogen bonds, one through the donating OH group, and one through the accepting N atom. They are equal in length, 3.05 Å, and they link the molecules in an endless puckered ribbon along the c axis (Figure 2). Due to resonance $(II) \leftrightarrow (III)$ the protons in the hydrogen bonds occupy statistically two positions, near the oxygen atom and near the nitrogen atom, in the sense of Hunter's mesohydric tautomerism.¹⁸ This explains the appearance of two NH-bands in the Raman³ and in the IR spectra.⁴ The absence of the C-O double-bond frequency in the spectra is also explained, since the proposed formula requires an intermediate single-double bond with bond length similar to that in acetic acid or in the free acetamide.

The tendency for hydrogen bonding, as required by the proposed structure, explains the high solubility in water as well as some properties of aqueous solutions observed by previous authors.¹⁹

Figure 2. The structure of mercury(II) acetamide projected down the b-axis. The hydrogen bonds are shown by dotted lines.

The ribbons are arranged towards each other in such a way that the oxygen atoms of the adjacent molecules approach the mercury atom from both sides at a distance of 2.88 Å. This distance is equal to the sum of the van der Waals radii(1.50 + 1.40 Å).⁵ The two oxygen atoms which belong to the same molecule are 3.17 Å apart from the mercury atom. This distance is larger than the sum of the van der Waals radii and cannot be included in the mercury co-ordination sphere. Two methyl groups from two neighbouring molecules complete the intermolecular approaches about the mercury atom at 3.82 Å.

The carbon-carbon bond length of 1.58 Å is similar to that found in bis(acetamide)cadmium(II) chloride.²⁰

Acknowledgments. The authors thank Professor T. Pinter, Laboratory of Chemistry, Faculty of Medicine, Zagreb, for suggesting the problem, and Professor R. Mason, Dr. G. B. Robertson, and Dr. N. A. Bailey, Chemistry Department, Sheffield University, for great help in computing facilities. The financial support from Yugoslav Foundation for Scientific Research, Belgrade, is gratefully acknowledged.

(20) L. Cavalca, M. Nardelli, and L. Coghi, Nuovo Cimento, 6, 278 (1957).